
 1

 
 
 
 
 

Application of Moment Expansion Method to Options Square 
Root Model 

 
  

MidYear Progress Report for AMSC 663 
 

Yun Zhou   zhouyun@math.umd.edu 
Applied Mathematics and Scientific Computation 

University of Maryland, College Park, MD 
 

Advisor: Dr. Steven Heston  sheston@rhsmith.umd.edu 
Department of Finance, Robert H. Smith School of Business 

University of Maryland, College Park, MD 
 

Dec, 2008 
 
 
 
 
 
 
 
 
Abstract 
 
The Options Square Root Model or Heston Model is the stochastic volatility model 
developed by Heston (1993). The governing equations consider not only the stochastic 
spot return but also stochastic volatility, which has a correlation with spot return. Heston 
(1993) gave a closed-form solution for the European Call option price based on Fourier 
Transform method. In this project, we implement a moment expansion method to solve 
the Options Square Model and the solution is compared with the Fourier Transform based 
solution. The moment generating function is used to derive from first to at least sixth 
order moments to calculate the options price. This moment expansion based solution is 
compared with Fourier Transform based solution in terms of accuracy and 
implementation difficulty.  
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1 Background 
 
Because it is easy to calculate and explicitly model the relationship of all the variables, 
the Black-Scholes Model has been widely and successfully used in explaining stock 
option prices. However, the strong assumption in Black-Scholes Model that the stock 
returns are normally distributed with constant variance and mean is not true in reality. 
Emprical study shows that in reality security prices do not follow a strict stationary log-
normal process and the variance is not a constant. Starting from this point, Hull and 
White (1987) proposed a new model with stochastic volatility. However, these types of 
models could not provide a closed form solutions and involve more numerical techniques. 
Heston(1993) proposed a new stochastic volatility model describing the evolution of 
volatility of the underlying asset. He also provided a closed-form solution. The basic 
Heston model assumes that St, the price of the asset, is determined by a geometric 
Brownian motion: 

s
t t t t tdS S dt v S dWμ= +                                                                                          (1) 

where νt, the instantaneous variance, is a CIR (Cox-Ingersoll-Ross)  process: 
( ) v

t t t tdv k v dt v dWθ σ= − +                                                                                   (2) 
s v

t tdW dW dtρ=  
and ,s v

t tdW dW are Wiener Processes with correlation ρ. 
The parameters in the above equations represent the following: 

• μ is the average rate of return of the asset.  
• θ is the long vol, or long run average price volatility; as t tends to infinity, the 

expected value of νt tends to θ.  
• κ is the rate at which νt reverts to θ.  
• σ is the vol of vol, or volatility of the volatility, i.e, the variance of νt.  

The Wiener Process Wt is characterized by three facts: 
1. W0 = 0  
2. Wt is almost surely continuous  
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3. Wt has independent increments with distribution (0, )t sW W N t s− −∼  (for 0 ≤ s < 
t).  

N(μ, σ2) denotes the normal distribution with expected value μ and variance σ2. The 
condition that it has independent increments means that if 0 ≤ s1 ≤ t1 ≤ s 2 ≤ t2 then 
Wt1 − Ws1 and Wt2 − Ws2 are independent random variables, and the similar condition 
holds for n increments. An alternative characterization of the Wiener Process is an almost 
surely continuous martingale with W0 = 0 and quadratic variation [Wt, Wt] = t (which 
means that Wt

2-t is also a martingale). 
The CIR process is a Markov process with continuous paths defined by the following 
stochastic differential equation: 

( )t t t tdr r dt r dWθ μ σ= − − +  
where θ and σ are parameters. Value tr  follows a noncentral Chi-Square distribution. The 
CIR process is widely used to model short term interest rate. 
 
2 Approach 
 
Let ln ( )x S t= , the spot return, according to equation (1), we can have  

1
2( ) s

tdx v dt vdWμ= − +  
with terminal condition at the expiration time ( , ,0, ) nM x v n x= . 
Then, with equation (2) ( ) v

tdv k v dt vdWθ σ= − + to formulate the Kolmogorov 
Backward Equation: 

21 1 1
2 2 2( ) ( )xx xv vv x vvM vM vM v M k v M Mτρξ ξ μ θ+ + + − + − =                                           (3) 

Guess 
0 0

( , , , ) ( )
n n i

n i j
ij

i j
M x v n C x vτ τ

−

= =

= ∑∑ , with initial conditions 0 (0) 1, (0) 0n ijC C= = . τ  

here is the time to expiration time, i.e., T t− , when T is the maturity time and t is the 
current time. 
 Considering n=1, then 

10 01 00( , , ,1) ( ) ( ) ( )M x v C x C v Cτ τ τ τ= + +                                                                             (4) 
Substitute equation (4) into (3), we have 

' ' '1
10 01 10 01 002( ) ( ) ( ) ( ) ( ) ( ) ( )v C k v C C x C v Cμ τ θ τ τ τ τ− + − = + +  

Then we can get two ordinary differential equations,  
'1

10 01 012( ( ) ( )) ( )C kC v C vτ τ τ− + =                                                                                        (5) 
                                                                                          (6) 
 

Solve equation (5) and (6) with initial conditions, we get 

01 00
0.5 0.5 (0.5 0.5 ), 0.5

k ke eC C
k k

τ τ θμτ τθ
− −− + −

= = + −  

Then the 1st moment (0.5 0.5 ) ( 0.5 0.5 )( , , ,1) 0.5
k ke e vM x v x

k k

τ τθτ μτ τθ
− −− − +

= + − + + . 

'
10 01 00( ) ( ) ( )C k C Cμ τ θ τ τ+ =
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Similarly, using backward equation (3) will generate a group of linear ordinary 
differential equations, moments could be got after solving these ordinary differential 
equations. The results up to 3rd moments and the derivation process are in the Appendix.  
Next, we need to consider the way to implement moments into option price formula. 
European Call Option payoff at the expiration time T is the maximum of 0 and the stock 
price at the expiration time minus the strike price, i.e., ( , ( )) (0, ( ) )C T S T S T K += − . The 
similar method will be used in this study as Corrado and Su (1996). They used truncated 
Gram-Charlier series expansion of the density function up to 4th moment. The resulting 
truncated density gave an estimation of the nonnormal skewness and kurtosis as 
following: 

3 4 33 4 2
3! 4!( ) ( ) 1 ( 3 ) ( 6 3)g z n z z z z zμ μ −⎡ ⎤= + − + − +⎣ ⎦                                                                 (7) 

where 
2 / 21

2
( ) zn z e

π
−= , 

2
0ln( / ) ( / 2)tS S tz

t
μ σ

σ
− −

= , 3, 4μ μ  are the 3rd and 4th moment 

respectively, σ  is the standard deviation of returns for the underlying stock, which is a 
constant.  
If z is standard normal, then the skewness and kurtosis are 3 40, 3μ μ= = , which reduced 
the truncated density function (7) as the standard normal density function.  
Based on this truncated Gram-Charlier density expansion, they give option price formula 
as following: 

3 3 4 4GC BSC C Q Qμ μ= + +                                                                                                     (8) 
where  
 
 
                                                                  is the Black-Scholes option pricing formula 

             
2

0ln( / ) ( / 2)S K r td
t

σ
σ
+ +

= . 

After obtaining the 3rd and 4th moments using the moment expansion method, we can 
implement these moments into equation (8) as 3, 4μ μ , with the same 3 4,Q Q part. Then the 
call option price can be calculated.  
To determine which nth moment is enough to satisfy accuracy requirement, we will use 
the Fourier transform solution as the truth and compare the relative error. Therefore, we 
can use the moment expansion solutions as an approximation of the Fourier transform 
solution.  
Heston (1993) guessed a solution to the Heston model, which involves two parts, one is 
the present value of the spot asset before optimal exercise, and the other is the present 
value of the strike-price payment. The solution has the following form: 

1 2( , , ) ( , )C s v t SP KP t T P= −  
Where ( )( , ) e T tP t T − −=  is the price at time t of a unit discount bond that matures at time T. 
Both of these two terms satisfy equation (3). 

1, 2P P  satisfy the terminal condition, 

( ln[ ])( , , ; ln[ ]) 1j x KP x T Kν ≥= . 

21
3 03!

2 3 3/ 21
4 04!

((2 ) ( ) ( ))

(( 1 3 ( )) ( ) ( ))

Q S t t d n d tN d

Q S t d t d t n d t N d

σ σ σ

σ σ σ σ

= − −

= − − − +
0 ( ) ( )rt

BSC S N d Ke N d tσ−= − −
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and have characteristic functions ( , , ; )jf x v t φ  respectively which also satisfy equation (3). 

1, 2P P  can be obtained from the solutions of these characteristic functions. Then the call 
option prices can be obtained.  
To check the accuracy, we compare the Fourier Transform based solutions FC  with 1st to 
nth order moment expansion based solutions n

MC . The graph of n
M FC C−& &  and n could 

help us to determine a cutoff and find the good enough estimation.  
 
3 Testing 
 
I programmed in Matlab the exact solutions given by Heston (1993) for comparison. The 
test is using the same parameters as Table 1.  
Fig.1 shows that the effect of negative and positive correlation of the two Wiener Process 
in option price. When the correlation is positive, option price with Heston model has 
more value than the results with Black-Scholes model when call option is out of the 
money, while less value than the results with Black-Scholes model when call option is in 
the money. The negative correlation has the opposite effect. Fig.2 shows the effect of 
increasing of volatility of volatility. Increasing volatility makes the option price with 
Heston model has more value when the stock price is far from the strike price and less 
value when the stock price is near the strike price. All these results mathes Heston Paper.  
Fig.3 is the marginal effect of nonnormal skewness and kurtosis, i.e., 3 4,Q Q part in 
equation (8). - 3Q  has similar effect with correlation in Fig.1 while 4Q  has similar effect 
with volatility of volatility. These two parts will not change when moments from moment 
expansion method are applied to equation (8).  
 
 
 

Parameters Value in Fig.1 Value in Fig. 2 Value in Fig.3 
Mean reversion 2 2 - 

Long-run variance 0.01 0.01 0.15 
Initial variance 0.01 0.01 - 

Correlation 0.5/-0.5 0 - 
Volatility of volatility 

parameter 
0.1 0.1/0.2 - 

Option maturity 0.5 year 0.5 year 0.25 
Interest rate 0 0 0.04 
Strike Price 100 100 75-125 (S0=100) 

 

0(%) 100
rt

rt

Ke SMoneyness
Ke

−

−

−
= ×



 6

 
      Fig. 1 Option price with Heston Model minus Price with Black Scholes Model on different correlation 
 

 
Fig. 2 Option price with Heston Model minus Price with Black Scholes Model on different vol. of vol. 
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Fig. 3 Adjustment part (-Q3) and Q4 in equation (8) 

 
 
4 Future Work 
 
1) Continue working on solving group of linear ODEs numerically in Matlab for any nth 
order. Currently, the code is debugging for this. To solve this, the iterative way is to 
generate the ODEs (see Appendix) is used. We can either solve these ODEs iteratively, or 
use matrix exponential method which requires finding the coefficient matrix first. 
2)  Implement the solved moments into the equation (8) to get the European Call Option 
formula based on the Gram-Charlier density expansion. 
3) Test and validate the Fast Fourier Transfer (FFT) method for Heston Model. The code 
which is designed for general stochastic model is obtained from Jun Wang (AMSC). I 
need to implement the characteristic function for Heston model into the code. Comparing 
the testing results with the exact solutions to Heston model (present in Part 3) can be used 
for validation. 
4) Compare the computed option price by moment expansion method with the FFT 
solutions and the exact solutions for Heston model to determine the cutoff order of 
moment that need to use for option price estimation.  
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6 Appendix: Derivation of Moments 
 
Starting from the Backward Equation: 

21 1 1
2 2 2( ) ( )xx xv vv x vvM vM vM v M k v M Mτρξ ξ μ θ+ + + − + − =                                          (3) 
we can generate a group of linear ordinary differential equations as following, 
 
 
                                                                                                                                            (9) 
with initial conditions 0 (0) 1, (0) 0n ijC C= = . 
One method is to solve these ODEs interatively, the other one is to use matrix 
exponential. 
 
Then the solution is                    , with initial value b. 
Find out the eigenvalues jλ  and eigenvectors jz of matrix A, the solution can be written 
into 

1
( ) j

n
t

j j
j

y t b e zλ

=

=∑                                                                                                               (10) 

The coefficient matrix A: 
n=1 

0 0 0
0 0.5
0

A k
kμ θ

⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟
⎝ ⎠

 with corresponding 
10

01

00

( )
C

y t C
C

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
n=2 

' 21 1
, , 2, 1 1,2 2

1
, 1 1, 12

( 2)( 1) ( ( 1) ( 1)) ( ( 1)

( 1)) ( 1)
i j i j i j i j

i j i j

C kjC i j C i j i C j j

k j C i C

ρσ μ σ

θ
+ − +

+ + −

= + + + + + + + + + +

+ − +

'( ) ( )y t A y t=

( ) Aty t e b=
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2

0 0 0 0 0 0
1 0 0 0 0

0 0.5 2 0 0 0
2 0 0 0 0
1 2 0.5 0
0 0 0 0

k
k

A
k

k k
k

μ θ
μ ρσ σ θ

μ θ

⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −

= ⎜ ⎟
⎜ ⎟
⎜ ⎟+ + − −
⎜ ⎟⎜ ⎟
⎝ ⎠

    with corresponding 

20

11

02

10

01

00

( )

C
C
C

y t
C
C
C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
n=3 

2

2

2

0 0 0 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 0
0 1 2 0 0 0 0 0 0 0
0 0 0.5 3 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0
3 2( ) 2 1 0 0 0 0 0
0 1 2 3( ) 0.5 2 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 1 2 0.5 0 0 0
0 0 0 0 0 0 0 0

k
k

k
k

A
k k

k k
k

k k
k

μ θ
μ ρσ σ θ

μ ρσ σ θ
μ θ

μ ρσ σ θ
μ θ

⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟

− −⎜ ⎟
⎜ ⎟

= ⎜ ⎟
+ + − −⎜ ⎟

⎜ ⎟+ + − −
⎜ ⎟
⎜ ⎟
⎜ ⎟+ + − −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

with corresponding 
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y t
C
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
n=4 
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2

2

2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1.5 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.5 4 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0
6 3( ) 2 0 0 1.5 0 0 0 0 0 0 0 0
0 3 2 4 3( ) 0 0 1 2 0 0 0 0 0 0 0
0 0 1 3 6 4 0 0 0.5 3 0 0 0 0 0 0
0

k
k

k
k

k
k k k

A k k
k k

μ θ
μ θ σ θ

μ ρσ σ θ
μ ρσ σ θ

− −
− −

− −
− −

+ + − −
= + + − −

+ + − −

2

2

2

0 0 0 0 3 0 0 0 0 0 0 0 0
0 0 0 0 0 3 2( ) 2 0 1 0 0 0 0
0 0 0 0 0 0 1 2 3( ) 0 0.5 2 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 1 2 0.5 0
0 0 0 0 0 0 0 0 0 0 0 0 0

k
k k

k k
k

k k
k

μ θ
μ ρσ σ θ

μ ρσ σ θ
μ θ

μ ρσ σ θ
μ θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟+ + − −⎜ ⎟
⎜ ⎟+ + − −
⎜ ⎟
⎜ ⎟
⎜ ⎟+ + − −
⎜ ⎟⎜ ⎟
⎝ ⎠

with corresponding  
40

31

22

13

04

30

21

12

03

20

11

02

10

01

00

( )

C
C
C
C
C
C
C

y t C
C
C
C
C
C
C
C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠  

 
The 1st to 3rd moments are: 
 
 ( , , ,1)M x v τ = 

 
 

( , , , 2)M x v τ = 
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( , , ,3)M x v τ = 

 


